

Weiyun Jiang

Houston, TX 77051 || (805) 708-2745 || wyjiang@rice.edu

Education

Rice University (Expected June 2027)

Doctor of Philosophy, Electrical and Computer Engineering

GPA: 4.00/4.00

Stanford University (2020 - 2022)

Master of Science, Electrical Engineering

GPA: 4.01/4.30

University of California, Santa Barbara (2016 - 2020)

Bachelor of Science, Electrical Engineering

Outstanding Undergraduate EE Student Award

GPA: 3.99/4.00, *summa cum laude*

Publications

Guidestar-Free Adaptive Optics with Asymmetric Apertures. Weiyun Jiang, Haiyun Guo, Christopher Metzler, Ashok Veeraraghavan. Submitted to *ACM Transactions on Graphics*.

Latent Patched Efficient Diffusion Model for High Resolution Image Synthesis. Weiyun Jiang, Devendra K. Jangid, Seok-Jun Lee, Hamid R. Sheikh. *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops* (2025).

Temporally Consistent Atmospheric Turbulence Mitigation with Neural Representations. Haoming Cai, Jingxi Chen, Brandon Y Feng, Weiyun Jiang, Mingyang Xie, Kevin Zhang, Cornelia Fermuller, Yiannis Aloimonos, Ashok Veeraraghavan, Christopher Metzler. *Conference on Neural Information Processing Systems* (2025).

NeRT: Implicit Neural Representations for Unsupervised Atmospheric Turbulence Mitigation. Weiyun Jiang, Vivek Boominathan, and Ashok Veeraraghavan. *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops* (2023).

Sparse Tucker Tensor Decomposition on a Hybrid FPGA-CPU Platform. Weiyun Jiang, Kaiqi Zhang, Colin Yu Lin, Feng Xing, and Zheng Zhang. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* (2020).

Elephant-Human Conflict Mitigation: An Autonomous UAV Approach with Custom Hardware. Weiyun Jiang, Alexis Yang, and Yogananda Isukapalli. *International Telemetering Conference* (2021).

Research Experience

Rice Computational Imaging Lab

August 2022 – Present

Research Assistant

Advisor: Prof. Ashok Veeraraghavan

- Built the first real-time guidestar-free adaptive optics system that leverages asymmetric apertures and deep learning to recover wavefronts and correct severe aberrations with minimal measurements and computation.
- Developed an unsupervised approach for imaging through atmospheric and water turbulence.
- Designed an atmospheric turbulence simulator with temporal correlation for videos .

Stanford Computational Imaging Lab

March 2021 – September 2021

Research Assistant

Advisor: Prof. Gordon Wetzstein

- Leveraged FiLM-based priors to solve general ill-posed inverse problems.
- Designed a novel implicit neural network, local FiLM-ed SIREN to solve image inpainting.
- Investigated the ability of implicit neural network to learn priors using GAN loss.
- Achieved higher PSNR than baseline CNN and U-Net methods.

UCSB Uncertainty and Big Data Analysis Lab

June 2018 – September 2020

Research Assistant

Advisor: Prof. Zheng Zhang

- Accelerated sparse Tucker tensor decomposition on a hybrid FPGA-CPU platform.
- Designed a high-level synthesis FPGA implementation for sparse Tucker decomposition.
- Replaced the conventional singular value decomposition with QR decomposition with column pivoting to reduce the data storage cost and to speed up the computation.
- Achieved $23.6 \times \sim 1091 \times$ speedup and over 95% energy savings on the tested real-world tensor datasets over CPU.

Industry Experience

Samsung Research America – Mobile Innovation Lab

May 2024 – July 2024

Research Intern

Plano, TX

- Designed and implemented a latent-patched diffusion framework used for high-resolution image synthesis, significantly reducing GPU VRAM requirements and improving inference speed compared to existing state-of-the-art patched diffusion models.
- Internship work resulted in one pending patent and a CVPR Workshop publication.

Moffett AI

November 2020 – January 2021

Software Engineering Intern

Palo Alto, CA

- Generated test cases of various deep learning operations and state-of-the-art language and image classification models for FPGA verifications.
- Wrote shell scripts and Python codes to automate the whole testing framework for C model debugging.

Course Projects

Computational Imaging and Display Course

January 2021 – March 2021

Super-Resolution with SIREN-based Local Implicit Image Functions (LIIF)

- Investigated the performances of ReLU-based LIIF and SIREN-based LIIF on single image super-resolution.
- Replaced the ReLU activation functions in MLP with Sine activation functions.
- Explored the bottlenecks of current deep learning methods for super-resolution.

Mixed-Reality in Medicine Course

September 2021 – November 2021

Augmented Reality Guidance of Cryosurgery

- Visualized the tip of the needle inside patient's body using HoloLens and Opti-track system.
- Displayed MRI images at the location of the needle placement in real-time.

Awards

Edmund M. Dupree Distinguished Fellow of ECE Department (2022-2023)

Outstanding Senior of Class 2020 in College of Engineering (one awardee selected from the EE program)

Skills & Relevant Courses

Programming: Python, C++/C, C#, Unity, Blender, MATLAB, Verilog, Arduino, Eagle and LaTeX.

Courses: Machine Learning; Artificial Intelligence: Principles and Techniques; Computer Organization and Systems; Natural Language Processing with Deep Learning; Computational Imaging and Display; Convolutional Neural Networks for Visual Recognition; Computational Methods for Biomedical Image Analysis and Interpretation; Deep Generative Models; Introduction to Computer Graphics and Imaging; Mixed-Reality in Medicine.